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ASYMPTOTIC SOLUTION OF INITIAL BOUNDARY-VALUE
PROBLEMS FOR HYPERBOLIC SYSTEMS?

By B. GRANOFF anxp R. M. LEWIS
Courant Institute of Mathematical Sciences, New York University
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A theory is developed for the derivation of formal asymptotic solutions for initial boundary-value
problems for equations of the form

ou n» Ju

0-_ v. . — .

4 Frl p§1A 8xv+/\Bu+C f(z, X; A),

where 4% A%, B, and C are mxm matrix functions of ¢ and X = (x, ..., x,), u(t, X; A) is an
m-component column vector, and A is a large positive parameter. Our procedure is to consider a
formal asymptotic solution of the form

u(t, X; 2) ~ M2 3 (1) z,(t, X).
j=0

Substitution of this formal solution into the equation yields, for the function s(¢, X), a first order
partial differential equation which can be solved by the method of characteristics. If the coefficient
matrices satisfy certain conditions then we obtain, for the functions z;(t, X), linear systems of
ordinary differential equations called #ransport equations along space-time curves called rays. They
may be solved explicitly under suitable conditions. A proof is presented of the asymptotic nature
of the formal solution when the coeflicient matrices and initial data for u are appropriately chosen.
The problem of reflexion and refraction at an interface is considered.
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388 B. GRANOFF AND R. M. LEWIS

1. InTrRODUCTION

The purpose of this paper is tho develop a theory for the derivation of formal asymptotic
solutions for initial boundary-value problems for hyperbolic equations of the form

40, %) z (%) g“ +AB(, X) u+C(t,X) u = £(1,X; 1) (1)
Here 4% A7 (v=1, ...,n), B, and C are m X msmooth matrix functionsof tand X = (x,, ..., x,),
u(t,X) is an m-component vector, and A is a large positive parameter. The condition of
hyperbolicity plays no role in the formal theory. However, we shall see that it is important
for the rigorous discussion of § 3-2. A distinguishing feature of the problem we shall treat is
that the parameter A appears in the equation as a multiplicative factor of an undifferentiated
term as well as in the initial data w(0,X) = g(X, ). If B = C = 0, then (1) is ‘non-disper-
sive’. If B = 0 and C == 0 then we say that (1) is weakly dispersive, i.e. only an undifferentiated
term appears which is not multiplied by the large parameter A. If B <= 0 then we say that
(1) is strongly dispersive, i.e. an undifferentiated term is multiplied by the large parameter.

An asymptotic method for treating the dispersive hyperbolic equation

ty—2(X) Au+2202(X) 4 = 0 (2)

was developed by Lewis (1964). Further investigations were carried out by Bleistein (1965).
Our procedure is a direct extension of this method. The vector nature of the equation that
we consider is the primary difficulty that must be confronted. This difficulty is resolved by
standard techniques of linear algebra.

We have previously (Granoff & Lewis 1966) obtained the leading term of the asymptotic
expansion as A = oo of the solution of some problems of the form (1) with constant coeffi-
cients which can be solved exactly. From the form of those asymptotic expressions it is
reasonable to seek, in those problems that cannot be solved exactly, a formal asymptotic

solution of the form
u(t,X; 1) ~ edst, ® z (2A)~4 zj(t, X) (A—»>o0). (3)
j=0

Substitution of this formal solution into (1) yields, for the phase function s(t,X), a nonlinear
first order partial differential equation, which may be solved by the method of characteristics
(Courant & Hilbert 1962). The corresponding characteristic curves in space-time are
called rays. In the nondispersive or weakly dispersive cases the rays lie on the characteristic
hypersurface and are the ‘ bicharacteristics” of (1). In the strongly dispersive case they do not
lie on the characteristic hypersurfaces and this leads to the more interesting features of the
theory. If the coefficient matrices satisfy suitable conditions then we also obtain, for the
amplitude functions z;(t,X), recursive first order linear systems of ordinary differential
equations along the rays which can be solved. These systems of equations are called
transport equations. The ray theory outlined above is presented in § 2.

Lewis (1965) develops an asymptotic theory for an integro-differential equation of the

form o
+ 3 a0, x) 8 3 0, v(;X)= f F(r)u(t—r,X) dr. (4)
y=1 —®
Equations of this type occur in electromagnetic theory. He shows that, for a special choice
of F(1), (4) reduces to a partial differential equation of the form (1), called an asymptotically
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conservative symmetric hyperbolic equation. An equation of the form (1) is symmetric hyperbolic
if 4%is positive definite and 4” (v=1, ..., n) are symmetric and is asymptotically conservative
if Bis antihermitian, i.e. B* = — B. This terminology is appropriate because if C = 0 then (1)
conserves energy. Since for large values of the parameter A, ABu is the dominant undif-
ferentiated term, we say that (1) is asymptotically conservative. In the present paper we
present techniques applicable to a more general class of equations of the form (1) which
includes the asymptotically conservative symmetric hyperbolic case.

In general, the techniques needed to prove rigorously that the formal asymptotlc solutions
of the form (3) obtained in Lewis (1964, 1965) and this paper are actually asymptotic to the
exact solution of a given problem are not known. Up to the present time the justification for
calling the formal solution ‘asymptotic’ is that in problems where the asymptotic expansion
as A — co of the exact solution can be obtained explicitly, the formal solution and this
expansion agree. However, in the case when (1) is symmetric hyperbolic and asymptotically
conservative and the initial data for u is oscillatory, i.e.

u(0,X) = s 3 (1) ;(X), (5)

it can be shown that the formal asymptotic solution (8) is asymptotic to the exact solution.}
Data of the form (5) were introduced by Lax (1957) for a weakly dispersive equation.

The initial values for the characteristic equations and transport equations, which are
required for their solution, must be obtained from the given data for u, e.g. initial data and
boundary data. For the oscillatory initial data, discussed in § 3, the required initial values
can be derived directly from the given data for u. On the other hand, several problems occur
in which the initial values for the characteristic equations and transport equations cannot
be found directly from the given data. For such a problem an indirect method is required for
the determination of these quantities. This indirect method involves the consideration of a
related problem called a canonical problem. A canonical problem is one with the same local
properties as the given problem in the neighbourhood of the initial manifold or source
function region. However, it is formulated in such a manner that it may be solved exactly.
The asymptotic expansion as 1—> o0 of this exact solution is then investigated in order to
obtain the required initial values for the characteristic equations and transport equations.
Several examples which require a canonical problem are treated in Lewis (1965). The
concept of a canonical problem was introduced by Keller in his investigations of certain
elliptic partial differential equations (1953 or 1962).

In §5, we consider the initial boundary-value problem for the case when (1) is sym-
metric hyperbolic and asymptotically conservative. A linear homogeneous condition is
imposed on the solution u of (1) at the boundary. Under certain restrictions, a formal
asymptotic solution of the form (8) can be constructed by means of the principle of super-
position which satisfies the given condition at the boundary. The problem of reflexion and
refraction at an interface is considered in § 4. This differs from the boundary-value problem
in that (1) and its solution are defined on both sides of a given boundary surface. Our con-
struction is limited to the case when there is no total reflexion. In our investigation we found

1 To be more specific, we show that the formal asymptotic solution is asymptotic to the exact solution

with respect to a certain norm defined in §3-2.
49-2
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390 B. GRANOFF AND R. M. LEWIS

it convenient to treat this latter problem first and then consider the initial boundary-value
problem as a special case.

It can be shown that the equations which govern electro-magnetic wave propagation in
an isotropic nonconducting medium and in a plasma satisfy the various conditions necessary
in order that the ray theory be applicable. In both of these examples the governing equations
consist of Maxwell’s equations and an equation of motion of an electron in the given medium.
The parameter A is an average value of a frequency associated with the medium.

2. THE RAY THEORY

2-1.  The formal expansion, derivation of dispersion relation
and ray equations

We consider a hyperbolic system of equations of the form

J n

%13 4% Butcu—o, (6)
3t =1 3x,,

where the m X m matrices 4°; 4” (v=1,...,n); B; and C are smooth functions of ¢ and
X = (%q,...,%,); u(t,X) is an m-dimensional column vector; and A is a large positive para-
meter. The matrix 4%is assumed to be nonsingular. Let us consider the formal asymptotic

solution -
u(t, X; ) ~ et 3 (1) z,(t,X) (- o). (7)
j=0

The function s(¢, X) is called the phase function and z;(¢,X) is called the jth order amplitude
JSunction. Inserting (7) into (6) and collecting powers of A yields the recursive system of
equations

0z, n 0z, .
Gz, =«A°?;~V§1Avaf_czj (j=—1,0,...). (8)
Here G(t,X; 0,K) = 3 kA —iB—0Ad, (9)
y=1

s s
k, = o, (v=1,..,n); w=-— P
and z_,(¢,X) = 0.
The existence nontrivial solutions (7) implies that
detG(t, X; w,K) = 0. (10)

The m x m matrix G(¢, X; 0, K) is called the dispersion matrix and (10) is called the dispersion
relation. We assume that G has the properties:
(1) there exist p real distinct roots

o=htX,K) (j=1,...,p<m) (11)

of (10),
(ii) associated with each root #; there are ¢; linearly independent vectors r/,(¢, X, K)
such that Gri =0 (12)

) o .
and, furthermore, > ¢; =m and the set of m vectors 7, (j=1,..,p5u=1,...,¢;) is
j=1

linearly independent,
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(i) the integers ¢; are independent of #, X, and K. We call the vectors v, (u=1,...,4;)
the null vectors associated with the root w = 4; and the integer g; the multiplicity of 4.

If (6) is an asymptotically conservative symmetric hyperbolic equation, i.e. if 4° is
positive definite, 4” (v==1, ..., n) are symmetric; and B is antihermitian, then the dispersion
matrix G is hermitian and it can be shown that G has properties (i) and (ii). Property (iii)
is the only condition to be assumed. For this type of equation we may select the null vectors

so that [ri, A°c}] = 3,0 (13)

ij “ pve
Let us consider a particular root w = A(#, X, K) of an arbitrary dispersion matrix G given
by (9). Equation (11) may be regarded as a first order partial differential equation for the
phase function s(z, X) which can be solved by the method of characteristics. Its system of
characteristic equations is

de, b _, dk__ o du_dh
dt Tk "5 At axy At @

14

=1,...,n) (14)

The first two equations in (14) define space-time curves [, X(¢)] which are called rays. We
call the vector G = (g,, ..., g,) the group velocity. Along the rays s(z, X) satisfies the equation

ds n
G- ke (15)

In order to solve (14), (15), initial values for X, K, w, and s are required. The phase
function s(¢, X) is usually given on some initial manifold M of dimension d < n. From this
we can derive initial values for K and w at each X. The method for obtaining these quantities
1s described in Lewis (1965).

2-2. Derivation of the transport equations
In this section we shall show that each amplitude function z,(#, X)) appearing in (7) can be
found by solving a recursive system of ordinary differential equations. Our attention is
restricted to a given root w = A(¢, X, K) of (10) with multiplicity ¢. The discussion may be
repeated for each distinct root.
We now introduce the adjoint G* of the dispersion matrix G. It is easily seen from (9) that

G*(6, X, ,K) = 3 k, 4% 4. iB* — hA* (16)
=1

since K and 4(¢, X, K) are real-valued. Because the dimension of the null space of G is ¢,
it follows that the null space of G* has dimension ¢ also. Therefore there exist ¢ linearly
independent vectors p;(¢, X, K) (j=1, ..., q), such that

G, =0 (j=1,...,9). (17)
By property (iii) of § 2-1, we may differentiate (12) with respect to £, to obtain
or; JG .
G%f—l——él;;r]::o (]:1,...,Q). (18)

Because of (17), the inner product of the left hand side of (18) and p, yields

oG .
[:p‘ug "a%;rj] =0 (:ua]:}ls ceey 9) (19)
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392 B. GRANOFF AND R. M. LEWIS
But from (9) and (14) we find that
0G| ok, = A»—g, A°. (20)
Therefore, by inserting (20) into (19), we obtain
[P, A1) = g,[p,, 4°1;]  (mj=1,..,9). (21)

If we suppose that 4° = I't, where /is the m x m identity matrix, (21) is simplified when we
employ the following theorem.

Turorem 2-1. If G satisfies conditions (i) and (ii) of §2-1 and A° = I, then the vectors
p, (u=1,...,9) can be selected so that
Py 1] =0, (wyj=1,....9). (22)

The proof of this theorem is given in appendix I.
In the ensuing discussion we assume that 4° = 1. Then (21) may be rewritten as

P, A1) =g,0,; (Bj=1 .., q;v="0,...,1(g8=1)). (23)
Equation (23) is called the basic identity. From (8) we have
0z;
~Gz,, = + EAV31+CZ (j=-—1,0,...). (24)

Herez_, = 0.
From properties (i) and (ii) of § 21 it follows that there exists a basis of the m-dimensional

vector space £™ consisting of the vectors r r, which satisf
p g 199 %m Y

o [0 .<—1,w1
T\ y=hr;, (=g, .,m),]

where h;—h == 0 (j=¢+1,...,m). Therefore the jth order amplitude function z;(¢, X) has
the representation

(25)

2,(,X) = 3 76 X, K) 5,1, X, K). (26)

We insert (26) into (24) and then take the inner product of (24) and p,, (=1, ..., ¢). With
the aid of the basic identity (23), we obtain the equation

doi,  n Qg .
43 g, Chg Y rach=y (=1, ..,0), (27)
Ot 3x =1
where [pﬂ, L+ E A" ’+ Cr] (28)
and Yi=— z{me&+zmﬂ ) i 70 (29)
i=q+1

+ There is no loss of generality if we assume 4% = I because multiplication of (6) by (4% ! on the left
E A I@—i- % ﬁ”—aﬂ +Aﬁu+6u =0,
=1 axv
where Ar = (491 4», B = (4%~ B, C = (AO) IC. If (6) is hyperbolic and if its dispersion matrix G has
properties (i to ii1) of §2-1, then the above equation is also hyperbolic and its associated dispersion matrix
G = (49~ G has properties (i to iii) also. We may now treat this equation instead of (6) in the manner
described above.
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A consequence of (14) is that o0, N i doi, _ doi,
=S T

14

‘Thus (27) becomes the inhomogeneous system of ordinary differential equations

do’ q . .
%_{_ ;Tﬂi,ﬂi:yfﬂ (p=1,...,q). (30)

This system is called the jith order transport equations. We now show that the functions
7% (=1, ..., q), can be found from the (j—1)st order amplitude function z;_,. Replacing
J byj—1in (24) and then substituting (26) into (24) results in

w . 0Z: n 0z;
I Gr, = — |21 v -1 ). 31
3 st ( i+ 3t +0zj_1) (31)
By (25), we obtain from (31) the algebraic system of equations
noo 0z, n . 0Z;
=y =— (%24 3w %), 32
3 ol (Ft+ S 4 SO (32)

Since the right hand side of (32) is orthogonal to the null space of G*, the unknown functions
0% (i=¢+1,...,m), in (32) can be uniquely determined. Inserting ¢/ into (29) we obtain
7%.- We observe that forj = 0, the right-hand side of (82) vanishesand ¢? = 0 (i=¢+1, ..., m).
From (29) we find that 9% = 0 (4=1, ..., ¢). Hence the zero order transport equations are
homogeneous ordinary differential equations.

If (6)-is an asymptotically conservative symmetric hyperbolic equation, the dispersion
matrix G is hermitian and we may set p, = r,,. For this type of equation theorem 2-1 is not
necessary since (23) follows directly from (13). We note that in this instance the matrix
A° need not be the identity matrix. The jth order transport equations are again given by
(30) where 7; are given by (13) with p,, replaced by r, and 9r;/d replaced by A°(dr;/ ).

2-3. Solution of the transport equations

In general, the transport equations (30) form a system of linear first order ordinary
differential equations with variable coeflicients which cannot be solved explicitly. However,
under certain restrictions, the transport equations reduce to a system of equations which
can be solved exactly by standard methods. There are three specific cases of interest for
which the reduction can be accomplished. They are:

Case 1. The matrices 47 (v=1,...,4,) B and C are constant.

Case 2. The multiplicity of a given root is one.

Case 3. The multiplicity of a given root is two and

Ty =Ty and 71y, =—71,, where7; are given by (28).

The last case is important because it frequently occurs in problems of physical interest such
as electromagnetic wave propagation.

The verification that the above-mentioned cases can be solved explicitly is given in
8836, 3-8, and 39 of Lewis (1965). There the solutions are even exhibited. In the intro-
duction to this paper we mentioned that certain problems exist for which the initial data
for the transport equations cannot be found directly. For these problems a canonical
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394 B. GRANOFF AND R. M. LEWIS

problem is required. The treatment of these types of problems is also discussed in Lewis
(1965) in §§3-10 and 3-11. The canonical problems required for the transport equations
derived in the preceding section are given in Granoff & Lewis (1966).

3. OSCILLATORY INITIAL DATA

3-1. Initial values for the ray equations, phase equation,
and transport equation

In this section we derive the initial values of the ray equations, phase equation, and
transport equations from a particular initial value problem of (6). At ¢ = 0 we suppose that
the initial data for u is

u(0,X) = e\ 3 (id) £, (X). (33)

Initial data of this form is called oscillatory initial data. It was introduced by Lax (1957). We
shall derive all the required initial values directly from (33).

For each distinct root & = £;(¢, X, K) of the dispersion relation (10) we can construct a
formal solution u,(z, X) of the form (7). The asymptotic solution of (6) is then given as the
sum of these solutions, i.e.

u(t,X)~ S u,(,X), (34)
=1
where u,(t,X) = ¢ 3 (1) #7, (¢ X). (35)
=0
From (33) we obtain !
3 ()@, (X) = 3 (i) # 3 6450 92,(0,X). (36)
#=0 =0 j=1
In order that (36) be valid for all large values of A, we require
5;(0, X) = 50(X)  (j=1,...,p)- (37)
b
Then > 2,;(0,X) =1,(X) (#=0,1,...). (38)
i=1
We now write z,; as
E%nrz—""w’ (39)

where ri are the null vectors associated with = f; and v ;s a vector that can be found from

Z,1,; by (81). When z = 0, vy; = 0. Substltutlon of (39) into (38) yields

S

e

I
T

j=li=1

Since r} are linearly independent, the quantities ¢ ,;; can be uniquely determined. These
quantities are the initial values for the yth order transport equations.
Equation (37) gives the initial value for all the phase functions s;(¢, X). The initial value

for the wave vector K is given by
so(X)
k,= p (v=1,...,n). (41)

Thus we have derived all the required initial values for the ray equations, phase equation,
and transport equations.
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3:2. Proof of the asymptotic nature of the formal solution for the asymptotically conservative
symmetric hyperbolic equation with oscillatory initial data

We noted in the introduction to this paper that, in general, we do not know how to prove
rigorously the asymptotic nature of the formal solution (7). In the following discussion we
present the exceptional case for which precise statements can be made concerning the formal
solution.

Let us consider the asymptotically conservative symmetric hyperbolic equation

du . du
374—21/1 §£+ABu+Cu*O. (42)
Here 4” (v=1, ..., n), are smooth symmetric matrix functions of (¢, X), B is a smooth anti-
hermitian matrix function of (¢, X)), and C'is a smooth arbitrary matrix. We prescribe initial
data of the form (33) for (42). In addition, it is assumed that (33) has compact support. The
formal asymptotic solution is given by (34).

We delete all the terms in (34) after the pth term to obtain

oo b
U,= % ()3 et ¥y (2, X). (43)
#=0 Jj=1
Let us suppose that U is the exact solution of (42) and (33). Our goal is to estimate the
difference 8, = U ,—U. Since s;(¢, X) and z (¢, X)) satisfy the phase and transport equations
respectively, insertion of 8, into (42) results in

0, »n 08 . L.
2P AP+ ABO +CO = (iA)F Y eldsi,, 44
o A TP OO, = 0T 2 ey 4
where g, = izﬂ'-{- ﬁ 4’ 02, +Cz_ ..
I ot r=1 33('1, pI
It is clear that ¢, is independent of A. From (33) we find that
0,(0, X5 1) = ()07 60 3 i) +1,01.,(X). (45)
Let us represent the solution of (44), (45) as
0,(,X; ) =0L(,X; 1) +04(4,X; 1), - (46)
where 6}, satisfies (42) and (45) and 62 satisfies (44) and
62(0,X; 1) = 0. (47)

The solution of (44), (47) can be found by Duhamel’s principle (Courant & Hilbert 1962).
Application of this principle yields the solution

t
(X3 ) = () [ (6575 N dr, (48)
where ¢ (4, X; 7; A) satisfies (42) for ¢ > 7 and
b
S, X;7;4) = 2 ey (49)
i=1
Since (33) has compact support, it can be shown that ¢(7, X; 7; A) has compact support also.

50 VoL. 262. A.
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396 B. GRANOFF AND R. M. LEWIS
Under the conditions given above, the following theorem is valid.
THEOREM 3-1 6,)=1U0,—Ull= 0(r*t)  (0<t<t’), (50)
where ¢’ is the time of the first caustic,T i.e.
AU, —~Ul|-0 as A—o0 for 0<i¢<?.
Proof. 'The proof requires the two following lemmas.
LeMma 3-1.

I 0= [ 180X, 7, 0,8, X1, 0] dX < 02(t,7), (51)

i.e. the norm of ¢ is bounded independently of the parameter A. At a caustic a(¢,7) becomes
infinite.

Proof of lemma 3-1. If we set ¢ = e #¢p where x is a positive constant, then, by direct
substitution, we see that ¢ satisfies

aa‘f 3 g‘i’ FABG+ (Cul) § = (52)
The constant x# will be determined shortly. In Courant & Hilbert (1962) it is shown that (52)
implies 18,81, $ 42D 15 0 i) 1o, 55
where D:,ul—zl-é;;—l—C—l—C*.

Since B is antihermitian, B+ B* = 0. For a given region of space-time, 4 can be selected

sufficiently large so that the matrix D is positive definite in the given region. Itis clear that

4 depends in no way on the parameter A. The energy inequality (Courant & Hilbert 1962)

forg 1s

X0, $(6X,7,)] dX < f S0 X0, $(n X)X (54)
t T

Here t > 7 and D,, D, are domains of integration defined by a backward drawn ‘conoid of
dependence For a detailed description of D, and D, see Courant & Hilbert (1962). Since
$(7,X,1,1) has compact support, it can be shown that the domains D, and D, can be
replaced by the entire X-space and (54) will still hold. Hence

1801 = [ [$X,70), (X, 7,1)] dX

<[" 30X, $r X 01 dX = g (55)
From the definition of ¢ and (55) we obtain
1 (5,7, D)2 < €20 |jgp (7,7, A) 2. (56)

Insertion of (49) into ||¢ (7,7, 1)|? yields the inequality

b= 3 [ eoop,eiax< § 7 weld. e

Jrk=1

1 For a discussion of caustics see Lewis (1965).
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If we set e2ut—7) z [[‘PJ:‘Pk]I dX = a?(4,7), (58)

Jrk=1
then (56) and (57) imply (51). Since q» ; is infinite at a caustic, so is (¢, 7).

Lenva 3-2. les(6)l = | :[e;(t,X,A),e},(t,X,A)]dX}%=0(4*”)- (59)

Proof of lemma 3-2. In a manner described in the preceding theorem we may derive the
inequality 83, )12 < €2 03,(0, A) [ (60)
Insertion of (45) into (60) yields

1816, A) 2 < A=20-2 2 f " [,Zo )4 010,(%), 5, (m)-/»fpﬂw(X)] ax  (61)
= A7207202() + O (A72P73).

The statement of the lemma follows immediately from (61).
Proof of theorem 3-1. From (48) we find that

824, )2 = A~ f‘” l:ftqb(t,X; 75 ) dr, ftqb(t,X; 75 ) dr | dX. (62)
—0 0 0
Since ¢ is an m-component column vector

[['6 Xm0 dn [ 06X 75 )

_ g f;¢j(t,x;T;A)dT2
<[ wexinie]. @)

By Schwarz’s inequality,

U;|¢j(t,x; )] df]z < tf;|¢j(t,X; v 0)|2dr. (64)

From (63) and (64) we obtain
[j’qb(t,x; s, [ Bt X,n0) dr]
0

z[¢(tx 7; /I]Zdr—tf [(4,X,7,0), p(t,X,7,0)]dr.  (65)

From (62) and (65) it follows that
lo3 (s, Al < 220 [ (a7, )P (66)
0

With the aid of lemma 3-1 we obtain from (66) the inequality
4
e (s Dl < a2 [ a(t7)dr for 0<i<t, (67)
0

where ¢’ is the time of the first caustic. Hence

165(5, )l = O(A=#*). (68)
Now, by (68) and lemma 3-2, .

10,(, )] = [18L(2, 1) 402 (2, )| <118}, (£, 1) [ +1165 (£, )
— O(0)+ O(1-r+1). (69)
Therefore [|8,(¢,4)[| = O(17°*1).

50-2


http://rsta.royalsocietypublishing.org/

Vi
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,',/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 B. GRANOFF AND R. M. LEWIS

Thus, with respect to the norm || ||, the formal asymptotic solution (34) is asymptotic to
the exact solution U.

Without further restrictions on the matrix B, we have not been able to prove stronger
point-wise results. If B is a constant antihermitian matrix, we can obtain point-wise
estimates by means of Sobolev’s lemma (Courant & Hilbert 1962). In general, Sobolev’s
lemma cannot be used because the A dependence cannot be eliminated from the energy
inequalities of higher order.

Maslov (1963) has proved a theorem similar to theorem 3-1 for Dirac’s equation.

4. REFLEXION AND REFRACTION AT AN INTERFACE

4-1. Introduction

In this chapter we shall investigate the solution of the initial value problem for the
asymptotically conservative symmetric hyperbolic equation

Ju

072
4 at

© J y
+3 AVE)%+ABu+(,u = £(t,X, 1),

u(0,X) = v(X; 4),
for which some matrix coeflicients have a jump discontinuity across a smooth surface
Q: ¥ (X) = 0. To be more specific we assume that the matrices 4”(¢, X) (v=1,...,u) are
smooth for all X, the matrices A°(¢, X), B(¢,X), and C(t, X) have a jump discontinuity across
the surface 2 but are otherwise smooth, and that the functions v(X; 1) and f(¢, X; 1) vanish
in a neighbourhood of Q.
‘The interface condition we shall impose on the solution u of (70) is given by the equation

Alu(t,X)] =0 (XeQ). : (71)
Here 4 = % A, N = {,,...,7,} is the unit normal to Q, and [u] is the limiting value of
=1

(70)

the difference between u in the two regions of space separated by Q. This condition states
that the vector [u] belongs to the null space of the matrix 4. If we suppose that the orthogonal
complement of the null space is spanned by Qy, ..., Q > where p is the rank of 4, then a
statement equivalent to (71) is

[Q) [u]] =05 v=1,...,p; Xel (72)

In appendix II it is shown that (71) is a natural interface condition to impose. An example
of this type of condition is to be found in electromagnetic theory. In Jones (1964) it is shown
that sufficient conditions to determine the electric and magnetic fields are Na[E] = 0 and
N [H] = 0. In Maxwell’s equations the form of the matrix 4 is

\

(90 —(N) 0 —75 —1,
Aﬁ((N) 0 ) (N)~(773 0 _.,71), (N)V=NaV.

. L. N2 /3 0
Therefore the interface condition is

((1% méN)) ([[E) =0

which implies the usual conditions.
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"The problem we are about to treat may be described in the following manner. We suppose
that families of rays emanating from either the initial manifold or source region, or other
interfaces or boundaries intersect the surface Q with increasing t. With each family of rays
we have an associated wave, i.e. a formal solution of (1) of the form (7). Our procedure will
be to construct additional rays emanating from the interface Qinto the regions 2, : ¢ (X) > 0
and 2,: y(X) < 0. Then, for each ‘incident’ wave, we find additional waves associated
with these rays such that the sum of the ‘incident’ wave and constructed waves satisfies the
interface condition (71). If the incident rays are in 2, then the additional rays in 2, are
called reflected rays and the additional rays in 2, are called refracted rays.

The rays, phase function, and amplitude functions in (7) must satisfy the ray equations,
phase equation, and transport equations respectively. They are uniquely determined once
initial values for the ray, phase, and transport equations are given. The object of the
following sections is to derive these initial values on the surface Q in order to complete the
construction of the reflected and refracted waves.

Given an incident wave, we see that the phase functions s appearing in all its reflected
and refracted waves must be equal to the phase function s, of the incident wave on the
surface €. This is necessary because the interface condition (72) must be satisfied for all
large values of the parameter A. From this property we can obtain the initial values for the
reflected and refracted ray equations and phase equations on €. The application of the
interface condition then leads to a linear algebraic system of equations for the initial values
of the transport equations on €. Under certain restrictions we shall demonstrate that this
algebraic system has a unique solution. Since the interface condition is linear the sum of all
incident waves and their corresponding reflected and refracted waves will satisfy it.

4-2. Imtial values for the ray and phase equations on the interface

In each of the regions 2, and 2, there is a dispersion relation (10). Corresponding to
each dispersion relation there are ray equations (14) and a phase equation (15). We have
indicated in the preceding section that the phase of the reflected and refracted waves must
be equal to the phase s, of the incident wave on €. Therefore the initial value for the phase
equation (15) in both regions 2, and 2, is s,. It is obvious that the initial values for the
X ray equations are the points of intersection of the incident rays and the surface €. Initial
values for the K and w equations appearing in (14) remain to be found. Since

s(t,X) =5,(,X) (XeQ) (73)
for the phase s of every reflected and refracted wave, differentiation of (73) with respect to
t yields 0(t,X) = w,(4,X) (XeQ). (74)
Let us express the surface () parametrically by the equations

x,=x%,,..,6.1) (w=1,...,n). (75)

Then differentiation of (73) with respect to §, (#=1, ...,n—1) results in

L s Jx, & sy 0%,

v=1%9§—ﬂ:v§1§9};9§“ (XeQ,u=1,...,n—1). (76)
We may rewrite (76) as (K—-K,) Jﬂ: 0 (g=1,..,n—1), (77)
s as, (0%,
R S ]
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400 B. GRANOFF AND R. M. LEWIS

The vectors J, (¢=1,...,n—1), are linearly independent since { is a smooth surface and
each J , is orthogonal to N, the unit normal to 2. Therefore (77) implies that

K = N+ K, (78)

In order to find the initial values of K in 2, or 2, we must determine the values of the
scalar « for X () as the point X is approached from 2, or Z,. Let us consider region 2.
Let A(t, X, K) be a root of the dispersion relation in 2,. Then (74) and (78) imply that

W, X, oN+K,) =0, (XeQ). (79)

Now (79) is to be solved for the scalar «. There may be zero, one, or several real distinct
solutions for each £T. In any case, it can be shown that there is a finite number of solutions «
for each A. If there are no real solutions « then the root # does not generate any rays, i.e. no
rays which are solution of the ray equations for that % appears. For every real distinct
solution  of (79) there is a ray because for every real distinct « we have an initial value of the
vector K given by (78). This procedure is repeated for every distinct root of the dispersion
relation in 2,. In this manner we derive initial values for the vector K for each root of the
dispersion relative in 2,. We carry out the same procedure to obtain initial values of K in
region 9,.
4-3. Reflexion and refraction at the interface

Let us suppose that the incident ray originates in region 2,. Then the reflected rays are
those rays which are constructed from the roots of the dispersion relation in 2, on the inter-
face Q and proceed into region 2, with increasing values of . We require increasing values
of tin order that the reflected waves do not disturb the initial condition for uf. The reflected

rays satisfy the inequality .
N-X=>#5%=>0 on £ (80)
v=1

where N is the unit normal to £ which is directed into Z,. From the basic identity (23) we

btain the formula
may obtain u i = [r, dr], (81)
where r is any null vector corresponding to a root = 4. Substitution of (81) into (80) yields

[r,Ar] =0 on Q. (82)
Here 4 is given by (71).
The refracted rays are constructed from the roots of the dispersion equation in %, on {
and proceed into 2, with increasing values of t. They satisty the inequality

N-X<0 onQ. (83)
From (81) we obtain the equivalent statement

[r,47] <0 on Q. (84)

1 Distinct roots £ must have distinct solutions a because of the constant multiplicity property given
in §2-1.

% In our construction of the solution of an initial value problem for u, the initial conditions have already
been satisfied at ¢ = 0. If any reflected or refracted rays were to leave the interface with decreasing ¢ they
would intersect the initial plane and then u would no longer satisfy the initial conditions of the problem.
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4-4. Imtial values for the transport equations at the interface

Under certain restrictions we can uniquely determine the initial values on Q for the
transport equations associated with the reflected and refracted rays when the incident wave
is known. In this section we present these restrictions and describe the procedure for finding
the necessary initial values.

Let us recall that for every distinct root w = %(z, X, k) of the dispersion relation in 2, there
are ¢ linearly independent null vectors r;(¢, X, K) of the dispersion matrix. Now given a
root ® = f, each distinct « which satisfies (79) gives rise to a null space consisting of the
vectors (£, X, aN+Ky) (j=1, ..., ¢). Suppose we take all these null vectors for all roots and
all distinct o’s in 2, and label them R} (j=1,...,,). The preceding comments are equally
valid in region Z,. Therefore in a similar manner we obtain a set of x, null vectors R3.

We assume that no incident ray, reflected ray, or refracted ray is tangent to the interface (2.
By (81) this property may be expressed algebraically by

[RE AR 0 (i=1,2,j=1, ..., ). (85)
The second assumption we make is that

=y =p (86)
where p is the rank of 4.

THEOREM 4-1. At each point X e {2 where (85) and (86) are satisfied, the set of vectors R:
is linearly independent for each 1.

This theorem is proved in appendix II.

We suppose that the incident wave originates in £,. Then, as indicated in §4-3, the
reflected wave is also in 2, and the refracted wave is in 2,. At the interface £ we let u,
represent the sum of the incident and reflected waves

0

u~ S 3 (i) iz, (87)

o1 Jj=0
Now we let u, represent the sum of refracted waves at €2,

o«

Uy~ Yeido 3 (i) Jz?, . (88)

] Jj=0

Then the jump [u] at Qis given by

[u] = w,—u,~ 0 S (10)9(3 2, ~ 3 7,,). (59)

Jj=0

By imposing the interface condition (72) we obtain
0,22}, —22},,]=0 (v=1,...,p;/=0,1,...). (90)
g1 (2]

In order to find the initial values for the zero order transport equations on Q we setj = 0in

(90). Since 3 z},, can be expressed as a linear combination of the null vectors R}, ..., R},
(3]

we obtain a1
> Ly, = > ot R} (91)
a1

Jj=1
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402 B. GRANOFF AND R. M. LEWIS
Similarly, >, = 5 o?R2 (92)
o 2
Substitution of (91) and (92) into (90) results] in
[Qv, SoR—% U;R;] 0 (r=1,..,p). (93)
j=1 =1

Those coefficients o} of the vectors R} which satisfy [R}, AR}] < 0 are associated with the
incident wave. Therefore they are known quantities. The coeflicients ¢7 of the vectors
R? which satisfy [R?, AR?] > 0 are identically zero because we assume that the only
waves in region 2, are refracted waves. The remaining coefficients in 2, and 2, are

those corresponding to the reflected and refracted waves respectively. Let us suppose
[R},AR}] > 0(j=1,...,n) and [R?, AR?] < 0 (j=1,...,n,). Then (93) may be expressed as

[QV;SU}R}M §0’J2R]2] :‘g‘vv (V:]>"'>p)7 (94)
J=1 J=1

where the quantities # , are known from the incident wave. We observe that (94) is a linear
algebraic system of p equations for (n, 4 n,) unknowns. It can be solved uniquely ifn, 4+n, = p
and if the coeflicient matrix in (94) is non-singular.

THEOREM 4-2. At each point X e Q where (85) and (86) are satisfied, n,+n, = p and the
coefficient matrix in (94) is non-singular.

The proof of this theorem is found in appendix 1I. The existence and uniqueness of the
quantities ¢}, 07 appearing in (94) is established by theorem 4-2. Thus we have derived the
initial values for the zero order transport equations on the interface (2 under the various
restrictions imposed above.

In principle, the initial values for the higher order transport equations can be found in a
similar manner. We shall not attempt to do this here.

If (70) is isotropic, 1.e. if the roots w = / of the dispersion relation (10) depend on ¢, X, and
only the magnitude £ = /(K- K) of the vector K, then properties (85) and (86) follow from
conditions more simply understood in a physical sense. We first introduce an angle of
incidence 6, by the equation

cosfy = — (N~ X) [/ (Xo Xo), (95)
where X is an incident ray.
THEOREM 4-3. Let (70) be isotropic. Then, given a point X e Q, if |w,| is sufficiently large

where v, is given by (74) and |6, is sufficiently small, conditions (85) and (86) are satisfied.
This theorem is proved in appendix II.

5. REFLEXION AT A BOUNDARY

5-1. Introduction, formulation of boundary condition

Here we shall consider the initial boundary-value problem for the asymptotically con-
servative symmetric hyperbolic equation

M 5 Bu g Cu = £(1,X; 1), (96)

0
4 ax,
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Here u(0, X; 1) =v(X; A). : : (97)
Let us suppose there is a smooth surface 2 in X-space which is given parametrically by the
equations 2= 2 (Epy s yy) (=1, ..1). (98)

For simplicity we stipulate that the initial value v(X, 1) and source function (¢, X, 1) vanish
in a neighbourhood of Q. These assumptions eliminate the need for certain compatibility
conditions. : ‘

The problem we wish to treat is similar to the interface problem considered in § 4. Our
object is to find a formal asymptotic solution of (96), (97) which satisfies given conditions on
the boundary 2. On {2 we impose on the solution u a certain type of homogeneous boundary
condition. The solution u is a vector in an m-dimensional vector space £™. We introduce
a subspace 7" of E™ with the following properties:

(i) the matrix 4, given by (71), is non-positive over 7}, i.e.

[u,du] < O0forallueT,

(ii) 7 is maximal, i.e. the dimension of 7" is as large as the dimension of any subspace
having property (i).
The boundary condition is then expressed as

u(t,x,)eT for Xe. (99)
If T+ is the orthogonal complement of 7"and 7™ is spanned by the vectors Qy, ..., Q, then
(99) is equivalent to [Quul=0, j=1.,u for XeQ. (100)

This particular formulation of the boundary condition is sufficient to insure uniqueness of
the (exact) solution u of (96), (99), (Courant & Hilbert 1962). The boundary condition for
the field vectors in electromagnetic wave propagation at a perfect conductor is of the type
given above (Lewis 1958). '

Our procedure for this problem is similar to the procedure we followed in the interface
problem. We suppose that a family of rays intersects the boundary  with increasing ¢. As
before, these rays are called the incident rays and the wave associated with it, the incident
wave. We construct additional waves, called reflected waves, emanating from € in such a
way that the sum of the incident wave and reflected waves satisfy the given boundary
conditions. |

The construction of the reflected rays is given in detail in § 4-2. Here we have only one
domain under consideration. The discussion of reflexion given in § 4-3 is also valid under the
present circumstances. The only real difference between the two problems occurs in the
determination of the initial values for the transport equations. That problem is presented
in the next section.

5-2. Initial values for the transport equations at the boundary

The discussion in § 4-4 up to and including theorem 4-1 is valid for the present problem.
At the surface Q the solution « of (96), (97) is the sum of the incident wave and reflected
waves,

u~ e S )z, (XeQ). | (101)

A Jj=0

51 Vor. 262. A.
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404 B. GRANOFF AND R. M. LEWIS
We impose the boundary condition (100) on (101) to obtain
[Qi,%jzjﬂ]zo (j=0,1,...;1=1, ..., ). (102)

To find the initial values for the zero order transport equation we set j = 0 in (102). We
recall that 3 z ,; can be expressed as a linear combination of the null vectors R, ..., R, i.e.

ﬁ b p’
>2,,—= 5 oR, (103)
B J=1
Inserting (103) into (102) we obtain
SalQuR] =0 (i=1,...,4,XcQ). (104)
=

The coefficients o; associated with the incident wave are known at . Therefore only the
coeflicients g; associated with reflected waves are to be determined. These are the coefficients
for which [R;, AR;] < 0. Suppose the first d vectors Ry, ..., R; satisfy this inequality. Then
we consider

S alQuR]=F (=1, (105)

where F'is a known quantity. This algebraic linear system has a unique solution if = g and
the coeflicient matrix is non-singular. In a manner similar to that of the interface problem,
it can be shown that this is indeed the case. Therefore (105) can be solved uniquely and its
solution gives the necessary inited data for the zero order transport equation.

AprpEnDIX 1

Proof of theorem 2-1. Let v, (¢=1, ...,q) be any basis of the null space of G*. Form the
g x g matrix 4 = {[v ,,r;]}. If the matrix 4 is non-singular, 4~! = {a,} exists and

q 4 _
Setp, = é a,;v;. It is easily seen that the vectors p,, = 1,...,¢, span the null space G*

and satisfy (22). We now demonstrate that the matrix 4 is nonsingular. From properties
(1) and (ii), it follows that there exist m linearly independent vectors ry, ..., r,, such that

- 0 (j:1>---99)>
Grf'_{(hj_m r, (j:(_H—l,...,m),} (1)

where h,—h =+ 0 (j=g-+1,...,m). Hencer,,j = 1, ..., ¢ span the null space N(G) of G and

j J=q jsJ g sp P

r;,j = g+1,...,m span the range R(G) of G. Thus the m-dimensional vector space E™ can
) he di

be written as the direct sum En = N(G) @ R(G). (12)

If v belongs to N(G*), then [v, Gr] = [G*Vv,r] = 0. Hence R(G) L N(G*). Now suppose 4 is
singular. This implies that there exist «,, not all zero, such that

[élaﬂv"’rj] =0 (j=1,...,9). (I3)
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g
Hence ¥ «,v, is orthogonal to N(G). But é @,V, is also orthogonal to R(G). Thus it is
pw=1 p=1

orthogonal to every vector in £™ and must be the zero vector, i.e. « . =0 (p=1,...,g). Since
this is a contradiction, 4 must be non-singular.

ArpEnDIX II
1. Derivation of interface condition

We denote by region 2, those values of X for which ¢(X) > 0 and by region 2, those
values of X for which $(X) < 0. Let us suppose that u, is the solution of (70) in 2, and u,
is the solution in 2,. Then the solution u of (70) may be expressed as

u(l, X) = uy(t, X) +7[(X)] [u, (4, X) —u,(4, X)], (111)
where 7[¥] is the heaviside function. Furthermore, we may write
A° = A3y (X)] (47— 43),
B = By+[§(X)] (B, —By), (11 2)
C= Co+[¥(X)] (C1—C)).

Here A3 is the matrix 4° in region 2,, etc. Substituting (II 2) into (70), we obtain

d n. . ou u Ju
A%+ 3 AT 0B U, Gy () | 417 - 2

14

ro (%0 du,
4_#2;14 (72;“——]§~v

14 v

)‘[“A(Bl u, —B,yuy) +C, ul—Czuz:l

+0(¥) |grad | A[u, —u,] = £(, X, 1), (II3)
where () = 5’ (¥) is the delta function and 4 is given by (71). Since f(, X; 1) vanishes in a
neighbourhood of €, (II 3) implies that

Alu;—u,] =0 at Q. - (IT4)
2. Proofs of theorems 4-1 and 4-2

We list the following definitions for the sake of convenience.

Em™: a vector space of dimension . (I1I'5)

N = (7,): the unit normal to the interface (. (IT 6)

A: matrix defined by 4 = i n, 4" (I17)
v=1

Q,,..., Q,: a basis for the orthogonal complement of the null space of 4, p is the
rank of 4. (I18)
[Q,Ri]... [Q, R, ] [Q, Rf] ... [Q1, R,
M= C e . . : the matrix coefficient of the linear
[Q,R]]...[Q,, RL][Q,R{]...[Q,, RY]
algebraic system (94). (I19)
Proof of theorem 4-1.
The proof of this theorem requires the following lemma.

LeEMmA 4-1. [Ri,ARi{] =0 on Qifv=j (1=1,2). , (I110)

14 J
51-2
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406 B. GRANOFF AND R. M. LEWIS

Proof. We may delete the superscript ¢ because the proof is independent of the regions
2, and Z,. From the definition of the dispersion matrix G and (78), it is an easy calculation

to show that (; A+F)R; = 0 (IT11)

and (0, A+F)R, =0, (IT12)

where I = i k,oA?—iB—uw, A°. Let us first suppose that R; and R, are associated with
=1

distinct roots of the dispersion relation. Then «; and «, are not equal because of the property

of constant multiplicity of roots. From (II11) and (II 12) we obtain the equation

0=[R, (0;A+F)R;] = (o,—2;) [R,, AR}]. (I113)
Since a,—«; #+ 0 we must conclude that
[R,AR] =0 (v-)) (I114)

if R; and R, are associated with distinct roots. If R; and R, are associated with the same root
but «, and ¢; are distinct then (11 14) still holds. If ¢, and «; are equal but R; and R, are two
linearly independent vectors in the null space of a root, then (I114) is valid by (23) because

[R, AR] = § 1,[R, AR, =0 (r=j). (1115)

i ‘
Now we are ready to complete the proof of theorem 4-1. Let us assume that 3 £, R, = 0.
“~

Then, by lemma 4-1, ’

s . . . s
2 FilR, AR] = f[R, AR =0 (=1, o). (I116)
£

Since [RE, AR!] == 0 on Q by (85), (II16) implies f, =0 (v=1,...,4). Hence the vectors
R} are linearly independent for j = 1 or j = 2.

Proof of theorem 4-2

Lemma 4-2. Let V, be the subspace spanned by R where [R:, AR{] > 0, W, be the subspace
spanned by R} where [Rj, AR}] < 0, and N be the null space of the matrix 4. Then

i) Er=V,eW, e N (i,k=1,2). (I117)

(i) dimV, = dimV,, dimW, = dimW,,. (IL18)

Proof. Since the vectors R} (j=1,...,p) are linearly independent, it follows immediately
that the subspaces V; and W] are disjoint for z = 1 and 7 = 2. If a vector veVl] then it can be
shown, by lemma 4-1, that [v,4v] = 0. The equality holds only if v = 0. Similarly, 1f
vel,, [v, 4v] < 0 where the equality holds only if v = 0. From these properties of /; and I/
it follows that the null space N of 4, V, and W, are disjoint. Since dim (V;@® W,) = p and
dim N = m—p, we obtain the result

Ern=VoWae N (i=1,2). (IT19)

Now dim V] < p where pis the number of positive eigenvalues of 4 and dim (W, @ N) < m—p.
But dim V4 dim (W;® N) = m. Hence dim V| = dimV, = p and dim W, = dimW, = m—p.
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It is easily seen that the subspaces ¥; and W, are disjoint since 4 is positive definite on ¥}
and negative definite on . Since dim V] 4+ dim W, +dim N = m, we obtain

Ern=V,eoW,® N. 1120
2

Similarly En=V,eoW @& N. 1121
1

From lemma 4-2 we find that (93) is an algebraic system of p equations for p unknowns
since 7, = dim¥, and n, = dim W, where 7, and n, appear in (94) and dim ¥ +dim W, = p.

Lemma 4-3. The matrix M, given by (I19), is non-singular.
Proof. Assume the coefficient matrix is singular. This implies that there exist numbers
Brs ---> B, not all zero, such that

[AQ+..4+5,Q,, R =0 (j=1,...,n =dimP), (11 22)
Qo 48, QR =0 (j=1,...,m, = dim I¥}).

There exists a non-zero vector V=, Q,+...+#,Q, which belongs to the orthogonal
complement of the null space of 4 by (II8) and which is orthogonal to every vector in the
subspace V; @ W,. Since v is orthogonal to N and E» =V, @ W, ® N, v is orthogonal to every
vector in ™. Hence it must be the zero vector. This is a contradiction and thus the lemma

follows.
3. Proof of theorem 4-3

This proof involves some properties of isotropic asymptotically conservative symmetric

n
hyperbolic equations which we now present. Let us set &, = ka,, 3, of =1, and substitute

v=1

into the dispersion matrix G given by (9). The result is

G = ket —iB—h(t, X, k) A°, (11 23)
where & = ﬁ o, A” and £ is any root of the dispersion relation. We consider
v=1
det G = det [ks/ —iB—h(t, X, k) A°] = 0. (11 24)
Dividing (11 24) by &™ we obtain
de t[&f—iB_’f” X,5) AO] —o. (11 25)
Letting £ tend to infinity in (I125) yields
det [ —h(t,X) A°] = 0, (11 26)
where h(t, X) = lim [A(t, X, k) /k]. From (I126) it is apparent that &(t, X) is finite.

k—>©

LemMa 5-4. Every root w = A(t, X, k) of the dispersion relation (10) can be expressed as
(4, X, EK/k),iBr (1, X gK/k)]
gZ
Here r is a null vector of G(¢, X, £, K) and [r, A°r] = 1.
Proof. We have [kt —iB—h(t, X, k) A% £ (1, X, K) = 0, (I1 28)
51-3

hit, X, k) = k{?z(t, X) — f : Lx( (11 27)
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408 B. GRANOFF AND R. M. LEWIS
Taking the inner product of r(¢, X, K) and (11 28) we obtain
k[r,o/r]—|[r,iBr|—h[r, Ar] = 0. (11 29)
Now it follows from the basic identity (23) and the definition of .« that
s no oh dh
[r,or] = Vgla,,gy = g} ac,,?k; = 3 (11 30)
Since [r, Ar] = 1, we obtain from (I129) and (I1I 30)
dh h_|[r, 1Br]
T Ay (I131)
A solution of this first order ordinary differential equation is
k(4 i :
AL, X, K) — k [Const. n f [r(t, X, §K//f)>éfﬂtzx, EK/k)] dg]. (L 32)
1

The constant of integration is found as follows. Since

lim% = const. + fw [T, 12Bl'] dé = ?L,
ko 1
we obtain const. = /— fw [I’—gl‘z@ dé.

1

Insertion of this constant into (II 32) yields (I127).

Lemwma 4-5. Let b, and b,,,, be the smallest and greatest eigenvalue respectively of the
hermitian matrix iB. Let al;, and ad,,. be the smallest and greatest eigenvalue respectively
of the positive definite matrix 4° Then

min: < g (4, X) —h(t, X, k) < bmaX-. (11 33)

0
Amax. amln

Proof. From the extremal properties of eigenvalues of hermitian matrices we have the
inequalities b, [T, ] < [1,Br] < by [T, T] (11 34)
and 0 < ady. [r,r] < [r, A%] =1 < .. [r,T]. (I1 35)
From (II34) and (II 35) it follows that

%

bunin, < [r,iBr] < -

0 0
Cmax. aml

(1136)
By (I127) we obtain

i b §2d§}</z {/l—-—::;fg 2dg). (I137)

mln

Evaluation of the integrals and some rearrangement yields 11 33).

If the root A(f, X, k) has multiplicity ¢, then /(t, X) also has multiplicity ¢ because, by
property (iii) of § 2-1, gis independent of K. Since the sum of all the multiplicities of the roots
h of the dispersion relation is equal to m by property (ii) of § 2-1, it then follows that the sum
of all the multiplicities of the limits ?z(t, X)) is also . This immediately implies that every root
of (IT126) is equal to Ilcim h(t, X, k) [k for some A(¢, X, k) of the dispersion relation.
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ASYMPTOTIC SOLUTION OF BOUNDARY-VALUE PROBLEMS 409

Since all the limits A(z, X) are independent of the direction numbers «, ..., «,, we may
replace the matrix o/ by —«/ and still obtain the same set of roots of (I126). Hence we con-
clude that for every root A(%, X), —h(t,X) is also a root. It is easily scen that the rank of 7 is
equal to the total multiplicity of the non-zero roots % of (I126). Therefore we find that the
rank of &7 is independent of «,, ... @, and is an even integer. For o, = 7, where N = () is
the unit normal to ), &/ = 4. Therefore rank o = rank 4 = p.

(]

wo

- bmin./ag)ax

- max./a'?nm

Ficure 1

From (11) we observe that if h = 0 then the root 4 remains in the domain
- bmax./a?nin. < h < _bmin‘/alona,x.
(see figure 1). If > 0 then the root % tends to infinity in the domain v > —b_;, /a%,. and
ifh < 0, h tends to minus infinity in the domain o < --b,,,, /a3, . In the following discussion
we consider only those roots £ which are unbounded. ‘

Since the total multiplicity of all positive (negative) roots £ of (I126) must be $pitfollows
that the total multiplicity of the roots % of the dispersion relation which tend to oo (—o0)
is 1p. .

Let us first consider domain 2,. We assume that v, given by (74), satisfies

Wy > — bl min./a(l) max.* (II 38)
Here b, ,;;,,. is the smallest eigenvalue of the matrixiB defined in 2, and @, is the greatest
eigenvalue of the matrix 4° defined in 2,. We now show that if |¢,|, where 0, is given by
(95), is sufficiently small then, for each distinct unbounded root , which tends to 4 oo, of the
dispersion relation in 2, there are exactly two solutions « of (79).

From (I1381) it follows that d&/dk > 0 for 2> —b, ;. /a9 .« Therefore in the domain
® > — by nin /09 max., €very unbounded root is monotonically increasing to +oo. Hence
there exists one and only one real value £ for each distinct root such that A(z, X, k) = w,
(see figure 1). For each such £ we can find two solutions « in the following manner. We set

k? = a2+ 2aN- K, +-£3. (11 39)
Solving this quadratic equation for « we obtain -
a=—(N-Ky)+ {(N-K)?— (k§—£2)}. (II40)
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410 B. GRANOFF AND R. M. LEWIS
In the isotropic case it follows from the ray equations (14) that
X — (;%)K (11 41)
for each root # of the dispersion relation. From (IT41) and (95) we obtain
(N-K,) = —sgn (0hy/ k) k, cos 0. (I142)
Here 4, is the root gerenting the incident ray X,. Substitution of (II42) in (I140) yields
o = sgn (0h,/0k) k,cos 0,4 /{k*—kEsin? 0,}. (I143)
If sin? 6, < k?/k} (11 44)

for each distinct increasing unbound root, (1143) gives us two real solutions « for each such
root.

Let us now consider domain 2, in which b4, ;, and 43, ,. are defined. We assume, in
addition to (II38), that
( ), Wy > _b2min./a(2)max.' (II 4’5)
Proceeding again in the manner outlined above we find that there are exactly two solutions
a of (79) for each increasing unbounded root of the dispersion relation in 2,. Identical
results can be obtained for

Wy < min (—-— bz max./a? min.) . (II 46)
i=1,2
and for - bi min./a? max. < Wy < — bj max./ajo min. (24:]7 l:]: 1} 2) (II 47)

if the latter inequality is meaningful.
Now we have completed all the prerequisites in order to complete the proof of theorem 4-3.

Let us first derive property (85). Let R be any null vector corresponding to an unbounded #.
Then, by (1141), .

[R,AR] = N-X — (%%Z)NK (11 48)
By (78) and (1143), N-K =+ /(k2—k}sin?0,) =+ 0. (1149)

Because we consider the unbounded roots in the regions where they are monotonic,
oh| ok 4= 0. Hence [R, AR] = 0 and property (85) is satisfied.

To derive property (86) we first note that g; (:=1, 2) is equal to the sum of the products
of the number of solutions « of each distinct root and the multiplicity of each distinct root of
the dispersion relation in ;. The number of solutions « of each distinct root having solutions
is two and the sum of the multiplicities of the distinct roots having solutions is 4p. Hence

My = fg = P.
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